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ABSTRACT: Computational predictions of biomolecular struc-
ture via artificial intelligence (AI) based approaches, as exemplified
by AlphaFold software, have the potential to model of all life’s
biomolecules. We performed oligonucleotide structure prediction
and gauged the accuracy of the AI-generated models via their
agreement with experimental solution-state observables. We find
parts of these models in good agreement with experimental data,
and others falling short of the ground truth. The latter include
internal or capping loops, noncanonical base pairings, and regions
involving conformational flexibility, all essential for RNA folding,
interactions, and function. We estimate root-mean-square (r.m.s.) errors in predicted nucleotide bond vector orientations ranging
between 7° and 30°, with higher accuracies for simpler architectures of individual canonically paired helical stems. These mixed
results highlight the necessity of experimental validation of AI-based oligonucleotide model predictions and their current tendency to
mimic the training data set rather than reproduce the underlying reality.

■ INTRODUCTION
As revealed in the 2018 and 2020 Critical Assessment of
Structure Prediction trials,1 artificial intelligence (AI) based
protein structure prediction outperformed, by a wide margin,
the entirety of competing approaches, prevailing over groups of
researchers with decades of experience in the field. It suggested
feasibility for AI to perform scientific discovery on par with high-
resolution experimental structures,2 with job executions via
open servers taking minutes compared to years for experimental
structure determination. A 2024 update, the AI-based program
AlphaFold3 (AF3),3 pushed these capabilities even further,
extending structure predictions to complexes and oligonucleo-
tides, in effect covering the majority of biomolecular research
targets. Structures are predicted based on input sequence using
transformer neural networks, sequence homology, and by taking
advantage of ≈200,000 coordinate sets in the Protein Data Bank
(PDB),4 accumulated over 5 decades of experimental research.

These developments pose a crucial question: does application
of AI for discovery of biomolecular structure generate new
knowledge and better insight into reality, or is it producing an
elaborate mimic of its training data set? The answer to this
question requires a test akin to Alan Turing’s imitation game:5

would it be possible to distinguish AI-based predictions from
models that relied on experimental data? This question hinges
on the notion of accuracy as a measure of a model’s agreement
with the underlying reality. As ground truth is rarely known with

certainty, one cannot evaluate a distance to an unknown.
Therefore, a suitable metric is a measure of a model’s predictive
power, i.e. its ability to reproduce external experimental data
recorded on the object of study. Such validations have been
carried out for proteins,6,7 relying on the residual dipolar
coupling (RDC) data from solution nuclear magnetic resonance
(NMR). In this study we focus on AI-based structure predictions
of oligonucleotides, comparing them against experimental NMR
observables, and gauging their responses to established effects of
changes in buffer’s ionic composition, or primary sequence
modifications.

■ MATERIALS AND METHODS
AI-based predictions were made by submitting the RNA/DNA
sequences to the Google DeepMind AlphaFold server at
https://alphafoldserver.com/ for random seed job executions.
Aside from the investigations of the buffer cation impacts, no ion
selections were used for model predictions. AlphaFold’s pLDDT
scores were extracted from the B-factor columns of coordinate
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files and averaged for all atoms in each nucleotide. The
percentage of nucleotides predicted with low confidence was
calculated as the ratio of the number of residues with average
pLDDT below 70% and the total number of nucleotides in the
sequence. AI-generated quintuplets of models were processed
via the Reduce software,8 to add hydrogen atoms for RDC
processing and superimposed by best-fitting to the model
displaying the lowest average heavy atom coordinate root-mean-
square deviation (r.m.s.d.) to the rest.

NMR structures and RDC restraints were downloaded from
the RCSB Protein Data Bank at https://www.rcsb.org/. NMR
restraint files were processed to remove all RDCs excluded by
the deposition authors from structure determination, retaining
only the 1-bond C−H and N−H vectors as those corresponding
to highest-precision measurements. The models declared to be
the best representative conformers in the ensemble, as listed by
the deposition authors in the PDB file header, were used for all

further analysis and comparison with the AI-generated results.
Coordinates of the most representative NMR conformer were
compared to those of the AI-predicted bundle by minimizing the
r.m.s.d. between the corresponding non-hydrogen atoms and
averaging over the AI-derived bundle. Coordinate dispersion
within the AI-predicted bundle was calculated by reference to
the mean determined by best-fitting to the model displaying the
lowest non-hydrogen atom r.m.s.d to the rest.

RDC data, scaled if necessary for the relative magnitudes of
the static dipolar couplings, were fitted to the best NMR
conformers and the AF3 bundles via singular value decom-
positions (SVD).9 In the latter case, the interatomic vector
orientation (“A”) matrices were averaged over the aligned AI-
predicted bundles, with fit results representing the entire
ensembles of the output AI-generated modes. RDC data fit
quality was reported via both the r.m.s.d. between the

Table 1. U-Turn Characteristics of SLV RNAa

U-turn characteristic
1TBK NMR

(+Na+/−Mg2+)
AI predicted

(+Na+/−Mg2+)
1YN2 NMR

(+Na+/+Mn2+)
AI predicted

(+Na+/+Mg2+)

turn residue N α (degree) 116 ± 6 194 ± 47 184 ± 38 168 ± 2
stacking bases after turn (Å) N, R 3.63 ± 0.19 3.56 ± 0.05 4.22 ± 0.44 3.63 ± 0.03
stacking bases after turn (Å) R, R + 1 3.65 ± 0.30 3.78 ± 0.06 3.80 ± 0.24 3.86 ± 0.07
stacking U base and R 5′-phosphate (Å) 4.16 ± 0.36 4.48 ± 0.27 3.90 ± 0.64 4.66 ± 0.23
H-bond between U 2′OH and R N7 (Å) 3.36 ± 0.29 3.27 ± 0.16 2.55 ± 0.17 2.95 ± 0.07
U N3 and R 3′-phosphate distance (Å) 8.78 ± 0.31 4.18 ± 0.15 5.14 ± 0.68 4.33 ± 0.14
aAverages and standard deviations are calculated for the NMR (1TBK and 1YN2) and the AI-predicted ensembles.

Figure 1.AI predictions of the effects of the cations. Unless labeled as “NMR,” all shown structures are AI predictions. (A) SLV RNA of Varkud satellite
ribozyme determined via NMR (left column), without Mg2+ ions (top, 1TBK) and with Mn2+ ions (bottom, 1YN2), and predicted via AI (right
column), with Na+ ions and without Mg2+ ions (top), and with Mg2+ ions (bottom). The UNR motif is colored in yellow, orange, and red, respectively,
and the rest of the coloring matches a previous publication (Bergonzo et al. 2015).15 Na+ ions are colored cyan and Mn2+/Mg2+ ions are colored green.
(B) preQ1 riboswitch in the absence (left column) and presence (right column) of ligand (mimicked using guanosione-5′-diphosphate), and in the
absence (top row) and presence (bottom row) of Mg2+ ions. preQ1 is colored by domain based on a previous publication (Suddala et al. 2015).18 (C)
AI-based structure predictions for a designed RNA sequence result in a G-quadruplex in the presence of K+ ions, and a hairpin in the presence of Mg2+

ions (left panel). Guanine bases are colored magenta, other bases are colored blue, Mg2+ ions are colored green, and K+ ions are colored orange. Each
tetrad is identifiable and the overall helical twist is preserved (right panel, Guanine bases colored by residue number).
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experimental and the fitted RDC values, and the Q-factor,10

defined as
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where Da is the magnitude of the fitted alignment tensor and R is
its rhombicity. In the case of 2GBH, RDCs for the loop
nucleotides were analyzed by SVD-fitting the alignment tensor
to the stem nucleotide RDCs and predicting RDCs for the
ensemble of the loop nucleotide conformations with that
alignment tensor.

Orientational error optimizations were performed by 100,000
random samplings of normally distributed errors in the
experimental RDCs and the nucleotide orientations, by
reference to the most representative NMR model. For the
RDC data noise sampling, the NMR model-predicted RDCs
were generated by the SVD fit of the experimental RDCs and
subjected to random additions of normally distributed random
error with the standard deviation corresponding to the residual
r.m.s. fit of the experimental RDC data. For the samplings of the
nucleotide orientations, each nucleotide in the RNA/DNA
sequence was subjected to random rotations around its center of
mass with respect to randomly chosen axes with normally
distributed rotation angles at a given standard deviation. The
standard deviations for these random rotations were then
optimized to match in the course of 100,000 samplings, either
the Q-factors or the r.m.s. deviations of the RDC fits of the AI-
generated bundles to the experimental RDC data. Overall r.m.s.
orientational errors were calculated by averaging the Q-factor
based and r.m.s based orientational errors.

The widths of the major and minor grooves, the helical axis
bending parameters, and the base pair parameters were
calculated from the atomic coordinates via the Curves+ and
3DNA.11,12 These results are reported in the Supporting
Information.

■ RESULTS
Response of AI-Based RNA Predictions to the

Introduction of Metal Ions. RNA folding is affected by
both monovalent and divalent metal ions, as they associate with
the negatively changed backbone phosphates. We gauged the
response of AI structure predictions for RNA to the introduction
of Na+, K+, and Mg2+ ions for several cases where such effects
were established from experiment.

Stem-loop V of the Varkud Satellite ribozyme exhibits two
conformations depending on the buffer cations (Table 1 and
Figure 1a left column): a looser variant of the U-turn (UNR)
motif with Na+ (PDB ID: 1TBK), lacking the hydrogen bond
between R 5′−phosphate and U/H3 and their phosphate/base
stacking,13 and a canonical compact U-turn observed with Na+

and Mn2+ as a Mg2+ mimic (PDB ID: 1YN2).14 AI-based
predictions without Mg2+ and with Na+, resemble the compact
U-turn experimentally observed with Mn2+, rather than the loose
U-motif observed at the experimental conditions with sodium
chloride buffer present (Figure 1a top right). With Na+ and Mg2+

added, AI-generated models lose structure in the stacked bases
directly after the turn, as well as stacking between the U base and
the R 5′ phosphate (Figure 1a bottom right). AI modeling with
only Mg2+ added leads to the loss of several of U-turns’ critical
characteristics including positioning of the U base and R 5′-
phosphate, the hydrogen bond between the U:2′OH and R/N7,

and the sharp turn at the N nucleotide (Figure 1 and Table 1
Supporting Information). These deviations are accompanied by
inconsistency of the AI-placed Mg2+ ions with their locations in
1YN2. No predicted Mg2+ ion position matches the
experimentally determined sites while Na+ ions associate at
binding sites between the U and N residues’ phosphate groups
and G8/N7, which is a presumed artifact of Mn2+ d-orbital
interactions15 and likely unrepresentative of Mg2+ binding. In
summary, AI-based predictions without Mg2+ recover compact
rather than the expected loose U-turn, and the addition of Mg2+

in the presence of Na+ mostly preserves agreement with the
experiment of the RNA conformation, but fails to recover Mg2+

binding sites. Mg2+-only predictions exhibit further deterio-
ration of conformation accuracy (Supporting Information
Figure 1).

Class I PreQ1 riboswitch folds into an H-type pseudoknot
with K+ (PDB ID: 2L1V)16 or Ca2+ (PDB ID: 3K1V),17

exhibiting a single-molecule Förster energy transfer (smFRET)-
characterized conformational change18 in the presence of Mg2+.
AI-based predictions reproduce this experimental trend. With-
out ligand and Mg2+ ions, AI predictions exhibit increased
flexibility (Figure 1b, top left), primarily in P2 pseudoknot and
L2 loop regions, as indicated by higher average r.m.s.d. and
standard deviation of the five-member bundle. With both Mg2+

and ligand, the AI-predicted ensemble is less flexible (Figure 1b,
bottom right), while ligand-bound and Mg2+-free prediction
exhibits intermediate flexibility (Figure 1b, top right). The
Guanine “ligand” docks into the correct location and
conformation, associating with C17, A30, and U6. For the AI-
predicted structures, the values of coordinate r.m.s.d. to mean
indicate higher deviations in the absence of ions and ligand, and
lower deviations in the presence of Mg2+ and ligand, qualitatively
agreeing with the smFRET results. However, all AI-predicted
models are completely folded, while preQ1-I aptamer is known
to include a prefolded conformational ensemble with flexible 3′
tail, more pronounced without Mg2+. Therefore, we conclude
that AI-based predictions partially capture the subtle synergy
between RNA, ligand, and the ions in the buffer.

A designed G-rich RNA sequence transitions between a
hairpin and a G-quadruplex depending upon the ionic
environment.19 AI-based predictions for this sequence with
added K+ or Mg2+ ions generally follow that trend (Figure 1c
left). The presence of Mg2+ promotes a hairpin correctly
exhibiting 5 out of 7 base pairs excluding the A−A mismatch and
the loop-closing G-C. The 5′ tail is predicted to be helical, which
is not observed experimentally. Structure prediction with K+

produces a G-quadruplex (Figure 1c right), with K+ ions
centrally located relative to the three planar tetrads, which
exhibit a helical twist. The geometry of each tetrad is maintained
by some, but never all of the eight expected hydrogen bonds
(Supporting Information Figure 2). In summary, AI-based
predictions correctly capture the overall transition while missing
a number of important base pairing characteristics.
Response of AI-Based RNA Predictions to the Primary

Sequence Changes. RNA folds exhibit exquisite sensitivity to
modifications of the primary sequence, with several examples of
small changes at termini producing dramatic rearrangement of
the overall structure. We have investigated AI-based predictions
for two such cases.

A 25 nt MAPT 10 exon regulatory hairpin folds as a lower
stem and an upper stem-loop, separated by an A-bulge. It
undergoes lower stem rearrangements upon addition of 3 bases
at the 5′-end and 2 bases at the 3′-end, transitioning to a 30 nt
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hairpin, as demonstrated by single-molecule unfolding with
optical tweezers.20 A subsequent C-to-G mutation at the +19
position shifts the stem into a 27 nt hairpin. AI-generated models
largely agree with the experimentally established secondary
structures, which were predicted from primary sequences and
validated by single-molecule mechanical unfolding using optical
tweezers (Figure 2a left), including hairpin lengths and single-
nucleotide bulge locations. The UACC tetraloop capping the
hairpin fits no known motif,21 and exhibits inconsistent structure
predictions for each sequence (25nt, 30nt, +19G-30nt). AI-
based modeling of G-U base pairs is uneven, with those
embedded in the helical stems for the 25-mer and 30-mer
sequences well-formed, and tetraloop-closing G-U pairs either
unformed or inconsistent with hydrogen bonding (Figure 2a
right). Overall, the fidelity of the AI-generated models is mixed -
the secondary structure hairpins are reproduced well while
accuracy is lower in noncanonical regions.

HIV transcriptional control element RNA was shown to
exhibit dramatic differences in structural organization depend-
ing on the nucleotide sequence capping its 5′ terminus.22 A
single-nucleotide 5′ G overhang allows helix dimerization of
TAR with the polyA region, while a 5′ 3G cap inhibits such
dimerization, and promotes a TAR stem loop with an
unstructured polyA region. AI-based modeling predicts an
extended stacked helical structure for both 3G and 1G caps
(Figure 2b). In predictions of the 3G cap, the polyA region is
always incorrectly structured and the correct dimer interface is
never formed. However, the Cap1G-TPUD generally agrees
with an analogous stacked TAR-polyA structure (Cap1G-
TPUA, PDB ID: 6VVJ).
Validation of AI-Based RNA and DNA Structure

Predictions via Experimental RDCs. AI-based structure
predictions were carried out for 28 RNA and DNA constructs
previously studied via solution NMR at weakly aligned
conditions, with structure and experimental data depositions
in the PDB.23−42 As 75% of RNAs in our set correspond to
individual hairpins or stems, they are biased toward RNA’s most
basic building blocks, well-represented in the PDB and likely
constituting best-case scenarios for structural accuracy. With
NMR structures of RNA impacted by the restraint density and

the refinement force-field,43 we investigate AI-based models via
their agreement with experimental RDCs, connecting them to
geometric measures of accuracy via corresponding orientational
errors. This metric represents r.m.s. deviation in the orientations
of individual nucleotides that would be required to match the
observed agreement with the experimental RDCs relative to a
target structure. Compared to estimates based on random
interatomic vectors,44 our procedure employs both the structure
and the atomic identities of the measured RDCs, accounting for
nonuniform vector distributions and interatomic vector
correlations in individual nucleotides.

The results of these RDC-based validations are summarized in
Figure 3, Table 2, and Supporting Information Table 2,
exhibiting r.m.s. orientational errors ranging from 7° to 30°.
The highest accuracies, with sub-10° errors are observed for the
simplest, completely and canonically base-paired helical stems
including 2KYD and 2GBH-stem for RNA, and 5UZD and
5UZF for DNA. Four of our test cases exhibit r.m.s. orientational
errors exceeding 20° (1JOX, 2KE6, 1P5M, and 2GBH-loop),
including two stem-loops, a helical stem connected to a stem-
loop via an internal loop, and a dynamic eight-nucleotide loop
capping a stem. Overall, our test set yields AI models’ r.m.s.
orientational errors of 15° ± 5°, uncorrelated with the AF3
confidence metrics, but positively correlated with both transla-
tional errors and model precision (Supporting Information
Figure 3). Some of the test cases are discussed below.

MLV dimer initiation site helical stem (PDB ID: 2KYD)33

yields the best validation statistics of all tested AI models, with
r.m.s. orientational error of 7° and similar groove width profiles
for the NMR and AI models (Supporting Information Figure 4).
The apparent high scatter in the RDC correlation plot for 2KYD
in Figure 3 reflects the fact that the experimental RDCs sample
only approximately 12% of the theoretically accessible range as
they are limited to C−H nucleobase vectors, with little angular
variation relative to the z axis of the axially symmetric alignment
tensor. Helix 35 of 23S E. coli rRNA includes a stem (PDB ID:
2GBH) topped by a conformationally disordered octaloop.28

The accuracy of corresponding AI-generated models was
assessed separately for the rigid Watson−Crick paired stem
and the previously uncharacterized flexible loop, yielding

Figure 2. AI-based predictions for the differences in terminal sequences. (A) MAPT 10 exon RNA adopts experimentally established secondary
structures (left), including reorganization of the hairpin upon increase in the length from 25 nt (magenta) to 30 nt cyan), and +19G mutation (indigo,
19G underlined in sequence), as well as correct placement of the single-nt bulges (yellow). While the helical GU base pair is canonically formed in the
25 nt and the 30 nt hairpins (A, top right), AI predictions for the loop-closing GU base pair vary (A, bottom right). (B) Comparison of the AI
predictions for Cap3G-TPUD (left) and Cap1G-TPUD (right), 142 nt and 140 nt constructs employed to facilitate the NMR resonance assignment
for Cap1G-TPUA (PDB ID: 6VVJ). Overlap of the most representative NMR model for Cap1G-TPUA (pink), with the Cap1G-TPUD AI predictions
shows good alignment for stacked HIV-1 TAR and poly A domains.
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Figure 3.RDC-based validation of the AI predictions for 28 tested RNA and DNA constructs. PDB IDs are as listed. Most representative NMR models
(red) are shown aligned with the AI-generated bundles (blue). NMR structure-predicted RDCs are depicted as open black circles and AI model-
predicted RDCs as blue filled circles. For 2GBH, predicted RDCs are shown in blue for the stem and in cyan for the loop.
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respective r.m.s. orientational errors of 8°, second-lowest in the
set, and 22°, second-highest in the set.

Iron-responsive element RNA (PDB ID: 1NBR)24 contains a
lower stem rigidly positioned relative to an upper stem-loop,
with a C7 bulge and dynamic nucleotides 15 to 18 within the 13
to 18 hexaloop. Base positioning for the 13 to 17 stretch are
qualitatively similar for the NMR and AI models. However, AI-
generated models do not reproduce the dynamic nature of
nucleotides 15 to 18, with inclusion of those RDCs in validation
increasing the fit Q-factor from 0.318 to 0.453 (Supporting
Information Figure 5). In contrast to the NMR data, AI-based
models also exhibit increased variability in the upper stem-loop
and flexible positioning between the upper and the lower helices.
AI models’ r.m.s. orientational error of 14° is close to the test set
average.

Helix II of the template boundary element of Tetrahymena
telomerase RNA (PDB ID: 2M22)36 comprises a helical stem
with a noncanonical A6-A18 pair, capped by a GUAAU
pentaloop. Even though AI models include A6-A18 pairing,
both the amino hydrogens and the N1 atoms are in close
proximity, inconsistent with principles of hydrogen bonding. AI
models exhibit the pentaloop stacked with the stem, with G10
and U11 in the major groove, and A13, A14, and U15 in the

minor groove. For the NMR structures, while G10 and U11 are
in the major groove, none of the bases are stacked and A13 is in
the major groove. Fitting the alignment tensor to stem RDCs
(Qfit,stem = 0.271) and validating the loop RDCs (Qval,loop =
0.671), confirms inconsistency of the AI models’ pentaloop with
the NMR data (Supporting Information Figure 6). AI
predictions’ overall r.m.s. orientational error of 15° is close to
the test set average.

Cytoplasmic mRNA transport element (PDB IDs: 2KE6,
2KUR, 2KUU, 2KUV, 2KUW) is a three-segment helix
separated by two bulges and capped by an octaloop.32 These
constructs include the A′-RNA wild-type sequence and four
mutants designed for conversion between the A′- and A-RNA
conformations. AI models’ orientational errors range between
15° and 20°, with lower accuracies for the A′-conformations of
2KE6 and 2KUR and the highest accuracy for the 2KUW variant
with A-RNA lower stem. Major groove width profiles also
exhibit differences between AI and NMR models (Supporting
Information Figure 7).

Enzyme-activating fragment of human telomerase (PDB ID:
1Z31) contains a lower helix with a bulge, connected via an
internal 5-nucleotide loop to a UUCG stem-loop.27 The stems
and the UUCG loops are consistent for the NMR and AI

Table 2. Parameters of the NMR Models and the AI-Based Predictions for RNA and DNA Constructs Used for RDC-Based
Validation

RNA

PDB
ID

AI, pLDDT
< 70%

NMR,
Rgyr (Å)

AI, coordinate r.m.s.d.
to mean (Å)

AI, coordinate r.m.s.d.
to NMR (Å)

NMR,
RDC Q

AI,
RDC Q

NMR, RDC
r.m.s.d. (Hz)

AI, RDC
r.m.s.d. (Hz)

AI, orientation
error (deg)

2kyd 0.0 15.1 0.17 0.48 0.016 0.135 0.86 6.11 6.6
2gbh

stem
0.0 10.4 0.38 0.78 0.037 0.174 0.71 3.44 8.0

2k4c 0.0 24.4 0.16 3.43 0.072 0.234 1.15 3.65 10.1
2koc 0.0 10.4 0.51 0.93 0.078 0.237 0.60 1.66 10.1
2k5z 0.0 15.1 0.89 1.92 0.061 0.264 1.39 5.21 10.7
1p5n 11.8 16.7 0.91 1.82 0.180 0.350 2.38 4.17 13.0
2rn1 0.0 14.7 0.53 1.16 0.068 0.320 1.75 7.12 13.3
2m21 28.6 12.9 1.22 2.38 0.098 0.410 2.34 6.92 13.5
1nbr 3.4 14.5 1.09 2.24 0.122 0.318 2.28 6.20 14.4
2m22 17.4 13.1 0.64 2.29 0.116 0.389 2.41 6.38 14.6
2kuw 0.0 22.0 1.15 1.83 0.044 0.377 1.07 7.58 15.2
1xhp 0.0 16.3 0.53 1.22 0.083 0.412 2.49 10.85 16.3
2kuu 0.0 23.2 1.10 2.08 0.071 0.422 2.02 9.74 16.6
2kuv 0.0 24.3 1.38 1.98 0.029 0.435 0.81 9.95 17.7
2m8k 54.2 17.2 1.03 2.43 0.095 0.433 3.96 16.59 18.2
5a17 56.3 20.5 1.34 4.04 0.114 0.432 2.15 7.68 18.5
1z31 0.0 15.0 1.27 2.57 0.019 0.534 0.82 16.49 18.8
2kur 0.0 23.5 1.81 3.04 0.049 0.473 1.22 9.55 19.1
1p5m 14.5 21.6 1.60 3.16 0.217 0.597 2.55 5.57 20.2
2ke6 0.0 23.6 1.22 2.29 0.042 0.515 1.01 9.62 20.2
2gbh

loop
12.5 13.4 1.71 N/A N/A 0.423 N/A 8.37 22.4

1jox 0.0 10.7 1.32 3.57 0.201 1.091 2.92 6.89 29.5
DNA

PDB
ID

AI, pLDDT
< 70%

NMR,
Rgyr (Å)

AI, coordinate r.m.s.d.
to mean (Å)

AI, coordinate r.m.s.d.
to NMR (Å)

NMR,
RDC Q

AI,
RDC Q

NMR, RDC
r.m.s.d. (Hz)

AI, RDC
r.m.s.d. (Hz)

AI, orientation
error (deg)

5uzf 0.0 13.8 0.34 0.65 0.052 0.180 1.49 4.71 9.5
5uzd 0.0 13.6 0.33 0.54 0.063 0.208 1.74 4.90 9.8
1rvh 0.0 11.9 0.24 0.84 0.038 0.203 0.67 3.27 11.6
1fzx 0.0 12.8 0.27 0.61 0.043 0.262 1.03 5.44 13.2
1g14 0.0 12.9 0.24 0.54 0.039 0.320 0.94 6.35 15.2
1rvi 0.0 13.9 0.40 1.16 0.097 0.432 1.15 4.03 18.1
1naj 0.0 13.2 0.85 1.33 0.081 0.351 1.67 6.56 18.5

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.5c00245
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

F

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.5c00245/suppl_file/ci5c00245_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.5c00245/suppl_file/ci5c00245_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.5c00245/suppl_file/ci5c00245_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.5c00245/suppl_file/ci5c00245_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.5c00245/suppl_file/ci5c00245_si_001.pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.5c00245?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


models, but the internal loop exhibits differences, leading to
changes in relative helix positioning and high 18° orientational
error.

Kluyveromyces lactis telomerase RNA (PDB ID: 2M8K) folds
into an H-type pseudoknot including G-C:C and U-A:U
triples.34 While AF3 models generally reproduce the Watson−
Crick paired part of the triplets, positioning of the Hoogsteen-
paired purines in the stack is distorted. In result, the AI models
exhibit elevated r.m.s. orientational error of 18°.

The SOLE element of Oscar mRNA (PDB ID: 5A17)
includes a helical stem with A24 bulge, capped by an AUCAA
pentaloop.38 NMR data for A24 indicate significant conforma-
tional variability, in contrast to its helical stacking for the AI
models. Within the pentaloop, AI models exhibit fully stacked
bases, with A14 and U15 in the major groove, and C16, A17, and
A18 in the minor groove. In contrast, NMR data indicate the
absence of well-defined pentaloop structure aside from A14. The

19° r.m.s. orientational error for the AI models is higher than the
test set average.

For the P5.1 hairpin of Bacillus RNase P, 1JOX structure
reports a novel UGAGAU hexaloop capping a helical stem with
stacked-in U14 bulge.23 AI models exhibit flipped out bases for
U14 and G10, with Watson−Crick edges of G10 and U9 lined
up. In contrast, in 1JOX the Hoogstein edge of G10 is lined up
with the Watson−Crick edge of U9. The base of A11 is in the
major groove in 1JOX and in the minor groove in the AI models.
The structure of the hexaloop region in the AI models, distinctly
different from 1JOX, resembles a GAGA tetraloop. The overall
orientational error of ≈30° is the highest of all cases in our test
set.

Even though DNA structures do not exhibit the diversity of
RNA’s molecular folds, our tests of AI-generated DNA models
yield similar orientational errors of 10° to 19°. The best
validation statistics are observed for 5UZD and 5UZF,

Figure 4. Effect of Na+ ion additions on the accuracy of the AI-based predictions for a set of 9 RNA and DNA constructs. PDB IDs are as listed. Q-
factors for the reference NMR models are shown as open bars and those for the AI-generated model bundles as filled blue bars. For 2GBH, blue bars
correspond to the stem and cyan bars to the loop. The ratios between the number of the added Na+ ions and the number of nucleotides in the
sequences are listed on the horizontal axes. For 2K4C, the 1 Na+/nt calculation could not be performed due to limitations on the total number of added
ions.
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employed to investigate A-tract groove widths in DNA.42 These
trends are consistent between the NMR and AI models
(Supporting Information Figure 8), with helical axes bent
toward the minor grooves.

A pair of self-complementary DNAs containing central
AAAATTTT (A4T4, PDB ID: 1RVH) and TTTTAAAA
(T4A4, PDB ID: 1RVI) sequences41 proved to be more
challenging for AI modeling. Both NMR-determined and AI-
generated helices exhibit bending toward the minor grooves, and
narrowing for A4T4, or widening for T4A4, of the minor groove
toward the middle of the sequences. Minor groove 5′−3′
narrowing is a known feature of DNA A-tracts, well-represented
in the PDB. The opposing A-tract orientations in the A4T4 and
T4A4 sequences result in base stacking differences at the ApT
and TpA steps in the NMR models, with high negative roll of
−12° and bending toward the minor groove for ApT, and high
positive roll of 13° and bending toward the major groove for the
TpA. These effects are entirely missing for the AI-generated
models. NMR data also indicate bending between the A/T
blocks and the flanking G-C base pairs, toward the major groove

and via roll for the A4T4 sequence, and toward the minor groove
and via a roll/tilt for the T4A4 sequence (Supporting
Information Figure 9). These bends are present in the A4T4
AI models, albeit scaled down by 1/2, but missing in the T4A4 AI
models, resulting in differences in helical bending and
orientational error of 18° for the AI-predicted T4A4 construct.

Among our DNA test cases, the highest orientational error of
19° was found for the self-complementary Drew-Dickerson
dodecamer (PDB ID: 1NAJ).39 With over 40 crystal structures
reported in the PDB, it arguably represents the best-studied
structure of a DNA. Nonetheless, while the NMR and AI base-
pair tilt profiles are similar, roll and groove width profiles are
markedly different (Supporting Information Figure 10), possibly
reflecting previously noted crystal structure distortions for short
oligonucleotides due to lattice and bound cation effects.39

RDC validation was also used to gauge the response of the AI-
generated structures of oligonucleotides to the introduction of
monovalent cations, present at both physiological conditions
and in NMR buffers. Six RNAs and three DNAs from our set
were used, with Na+ ions added at 1/8, 1/4, 1/2 and 1 ion per

Figure 5. A visual summary of results presented in this work. The vertical axis ranges from global structure to atomistic detail. The horizontal axis
ranges from inaccurate to accurate, as determined by comparison to expected conformations or fits to RDCs.
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nucleotide. As indicated by the RDC fit statistics (Figure 4), we
do not observe systematic improvements in the accuracy of the
AI-generated structures with the inclusion of Na+.

■ DISCUSSION
Our assessment of the accuracy for AI-derived models of
oligonucleotides reveals a hit-or-miss performance, with some
structural aspects reproduced well, such as canonical base
pairing, common short RNA loops, or DNA A-tracts, while less
common or longer loops, dynamics, or details of hydrogen
bonding are not as consistent with reality (Figure 5). We observe
a lack of consistent correct response to introduction of cations or
sequence modifications known to affect structure. When
assessed against RDCs, highest fidelity is observed for more
basic structural elements, with accuracy deteriorating with the
architectural complexity. AI-based model predictions for
individual oligonucleotide helices exhibit 7° to 10° r.m.s.
orientational errors. In the presence of multiple conformations,
or incorrect loop predictions, orientational errors reach 20° to
30°. Deterioration of AI modeling accuracy for RNA loops is
expected to lead to errors in predictions for multihelix
sequences, or binding partner interactions. Orientational errors
determined here do not correlate with internal metrics of AF3
model confidence such as pLDDT or PAE. While neither of
these two metrics match the absolute orientational information
encoded in the RDCs, other internal measures of model quality
such as crystallographic resolution or crystallographic free R-
factor have shown correlations with the fidelity of the RDC
fits.45

Compared to our AI-based models of RNA with r.m.s.
orientational errors of 16° ± 5°, the orientational errors for the
DNA AI-based predictions are slightly lower at 14° ± 4°. We
also observe, in the case of Drew-Dickerson DNA, possible
effects of model training on structural data including
crystallization artifacts. The lack of correlation of the orienta-
tional error with AF3 confidence metrics (Supporting
Information Figure 2), including pLDDT and PAE (Figure 11
and Table 3 Supporting Information), and weakness of its
correlation with model precision complicate mistake detection
without external data. Overall, AI-based models appear to mimic
the training set rather than capture the underlying reality. This
departure from ground truth appears consistent with recent
observations of collapses of AI models upon recursive training46

and is also consistent with recent analysis via X-ray
crystallography.47 To counter this effect, we recommend
including the ability to integrate experimental data in the AI-
based predictions, or broadening the set of predicted models to
allow postselection against experimental data.
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